Hydrogen Bonds in Excited State Proton Transfer.
نویسندگان
چکیده
Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.
منابع مشابه
New six- and seven-membered ring pyrrole-pyridine hydrogen bond systems undergoing excited-state intramolecular proton transfer.
New molecules, and , possessing six- and seven-membered ring pyrrole-pyridine hydrogen bonds, respectively, are designed and synthesized, which undergo excited-state intramolecular proton transfer with distinct reaction dynamics.
متن کاملThe Effect of Hydrogen Bonding and π–π Stacking to Stabilization of 3D Networks of a New Proton Compound, (a-6-mpyH)(Hpyzd) H2O
A new proton transfer compound, formulated as (Hamp-6-pic)(Hpyzd) ∙H2O (1), has been synthesized from the reaction of pyrazine-2,3-dicarboxylic acid (H2pyzd) and 2-amino-6-methyl pyridine (amp-6-pic), in 1:1 molar ratio. Extensive O−H×××O, N−H×××N and O−H×××O hydrogen bonds involving (Hamp-6-pic)+ cation, (Hpyzd)- anion and co-crystal water molecule٫ static electronic٫ and π…π stacking interac...
متن کاملExcited-state proton transfer: from constrained systems to "super" photoacids to superfast proton transfer.
We have used knowledge of the electronic structure of excited states of acids to design molecules that exhibit enhanced excited-state acidity. Such "super" photoacids are the strongest reversible photoacids known and allow the time evolution of proton transfer to be examined in a wide array of organic solvents. This includes breaking/formation of the hydrogen bonds in hundreds of femtoseconds, ...
متن کاملMolecular Seesaw: How Increased Hydrogen Bonding Can Hinder Excited-State Proton Transfer.
A previously unexplained effect in the relative rate of excited-state intramolecular proton transfer (ESIPT) in related indole derivatives is investigated using both theory and experiment. Ultrafast spectroscopy [ J. Phys. Chem. A, 2015, 119, 5618-5625 ] found that although the diol 1,3-bis(2-pyridylimino)-4,7-dihydroxyisoindole exhibits two equivalent intramolecular hydrogen bonds, the ESIPT r...
متن کاملبه کاربردن تقریب دو حالته در تولید هیدروژن با فرود آمدن پروتون بر روی پوزیترونیوم
Although there is no experimental data available for antihydrogen formation following antiprotons impact on positroium atoms, as a charge transfer reaction, at incident energies which are suitable for antimatter high-precision spectroscopic studies, measurements were carried out for its charge-conjugate reaction i. e. hydrogen formation, by protons impact on positronium. In this study, a two-st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 117 16 شماره
صفحات -
تاریخ انتشار 2016